## Solving Equations Part 11

Example 1:

$$
3 x+6=18
$$

Since this equation is a bit more difficult to solve by inspection, we'll solve it algebraically.


NOTE: The addition property of equality must be performed BEFORE the multiplication property of equality.

## Example 2:

$$
7-2 x=19
$$

$$
\begin{aligned}
& 7-2 x=19 \\
& \frac{-7-7}{-12} \longleftarrow \text { subtract } 7 \text { from both sides. } \\
& \frac{-\mathbf{2 x}}{-2}=\frac{\mathbf{1 2}}{-2} \longleftarrow \text { Divide both sides by }-2 \text {. } \\
& \boldsymbol{x}=
\end{aligned}
$$

Recall: Equations involving fractions

$$
\begin{gathered}
\frac{4}{3} \cdot \frac{3}{4}= \\
\left(-\frac{3}{2}\right) \cdot\left(-\frac{2}{3}\right)=
\end{gathered}
$$

Example 3:

$$
\frac{3}{4} x=\frac{1}{5}
$$

The reciprocal approach:
To isolate the variable we need to divide both sides by $\frac{\mathbf{3}}{\mathbf{4}}$. Since dividing by a fraction is the same as multiplying by its reciprocal, we can multiply both sides by $\frac{4}{3}$.

$$
\begin{aligned}
\left(\frac{4}{3}\right) \frac{3}{4} x & =\frac{1}{5}\left(\frac{4}{3}\right) \\
x & =\frac{4}{15}
\end{aligned}
$$

This method is called the reciprocal approach, but only works for simple equations.

Example 4:

$$
\frac{3}{4} x=\frac{1}{2}+\frac{1}{3}
$$

If we were to use the reciprocal approach, we would multiply both sides by $\frac{\mathbf{4}}{\mathbf{3}}$ in order to isolate the variable. We would then be forced to distribute $\frac{\mathbf{4}}{\mathbf{3}}$ on the right hand side. To avoid this extra work we can use a method called clearing the fractions.

To clear the fractions we must first identify the lowest common denominator or the LCD for short.

The LCD for the equation in example 4 is $\mathbf{1 2}$, since 12 is the smallest number that ALL the denominators divide evenly into.

$$
\begin{array}{ll}
\mathbf{1 2}\left[\frac{\mathbf{3}}{\mathbf{4}} \boldsymbol{x}\right]=\left[\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}\right] \mathbf{1 2} & \begin{array}{l}
\text { Now that we've identified the LCD, } \\
\text { we multiply both sides of the } \\
\text { equation bu the LCD. }
\end{array} \\
\mathbf{9 x}=\mathbf{1 2}\left(\frac{\mathbf{1}}{\mathbf{2}}\right)+\mathbf{1 2}\left(\frac{\mathbf{1}}{\mathbf{3}}\right) & \begin{array}{l}
\text { Reduce. }
\end{array} \\
\mathbf{9 x}=\mathbf{6}+\mathbf{4} & \text { Notice that we eliminated ALL } \\
\frac{\mathbf{9 x}}{\mathbf{9}}=\frac{\mathbf{1 0}}{\mathbf{9}} & \text { the fractions! } \\
\boldsymbol{x}=\frac{\mathbf{1 0}}{\mathbf{9}} &
\end{array}
$$

## Example 5:

$$
-0.5 x-0.13=3.07
$$

Recall: A decimal is simply a fraction whose denominator is a power of 10 . The number 0.13 is said," thirteen hundredths" and as a fraction, is written $\frac{\mathbf{1 3}}{\mathbf{1 0 0}}$.

Rewriting the equation as fractions instead of decimals, we get:

$$
-\frac{5}{10} x-\frac{13}{100}=\frac{307}{100}
$$

Now we can clear the fractions. $L C D=\mathbf{1 0 0}$

$$
\begin{aligned}
& 100\left(-\frac{5}{10} x-\frac{13}{100}\right)=\left(\frac{307}{100}\right) 100 \\
& 100\left(-\frac{5}{10} x\right)-100\left(\frac{13}{100}\right)=\left(\frac{307}{100}\right) 100
\end{aligned}
$$

$$
-\mathbf{5 0 x}-\mathbf{1 3}=\mathbf{3 0 7} \quad \text { Now we have NO fractions in the }
$$

equation!

$$
-50 x-13=307
$$

$$
+13+13
$$

$$
\frac{-50 x}{-50} \quad=\frac{320}{-50}
$$

$$
\boldsymbol{x}=-\frac{\mathbf{3 2 0}}{\mathbf{5 0}} \quad \text { Now we must reduce. }
$$

$$
x=-\frac{320}{50}=-\frac{32}{5}
$$

Solving Equations Part 11
Solve each equation:

1. $5 x+13=58$
2. $8-3 x=-2$
3. $\frac{5}{8} x=\frac{1}{3}$
4. $\frac{9}{2} x=\frac{5}{3}+\frac{1}{6}$
5. $-0.2+0.05 x=9.8$
