Name: \qquad
Notes \#2 - Volume of 3-D Figures - Cones

Class: \qquad
Date: \qquad
A. Cone - has one base that is a circle and then meets at a common vertex.

Formula: $\quad V=\frac{B h}{3} \quad V=\frac{\pi r^{2} h}{3} \quad$ (what is the base in a cone?)

For Examples 1 and 2, find the volume of each cone.
Example 1a: radius?)

Volume $=$ \qquad Volume = \qquad
Find the volume to the nearest tenth.
\qquad Volume \approx \qquad

B. Comparing/Analyzing volumes.

Example 2:

a) Given the following figure, find the volume (leave in terms of π).

b) Draw a cone with the same dimensions as the figure above, what is the cones volume (leave in terms of π)?
c) How do the two volumes compare?

Example 3:

What would have a greater effect on the volume of a cone: doubling its radius or doubling its height? (Use the information from $2 b$ to get started)
a) Double radius:
b) Double height:

